



# Dijet Azimuthal Decorrelations vs NLO pQCD, Herwig and Pythia

#### Marek Zieliński University of Rochester



Special thanks to:

Michael Begel, Pavel Demine, Alexander Kupčo, Christophe Royon, Markus Wobisch

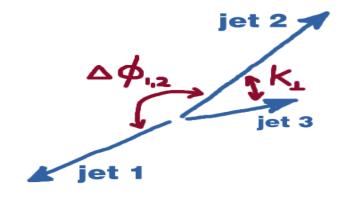
#### **Outline**

- Motivation
  - → Theoretical
  - → Experimental
- Analysis overview
  - → Data sample
  - → Corrections, unsmearing
  - → Systematics
- Results
  - → Comparisons to LO and NLO pQCD
  - → Comparisons to Monte Carlo generators
    - Herwig and Pythia
    - ❖ Impact of ISR, Tune A
- Summary and outlook

All results presented here are PRELIMINARY!



#### **Theoretical Motivation**

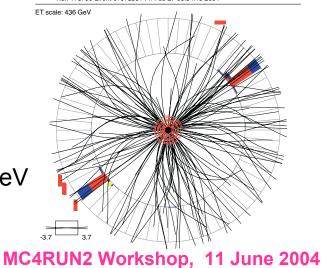

 In 2→2 scattering, partons emerge backto-back → additional radiation introduces Dijet production in lowest-order pQCD decorrelation in ΔΦ between the two leading partons/jets

 $\rightarrow$  Soft radiation:  $\Delta \Phi \sim \pi$ 

 $\rightarrow$  Hard radiation:  $\Delta \Phi < \pi$ 

- ΔΦ distribution is directly sensitive to higher-order QCD radiation
- Testing fixed-order pQCD and partonshower models across ΔΦ:
  - **→** ΔΦ~π:
    - ❖ FO calculations unstable
    - PS Monte Carlo's applicable
  - $\rightarrow 2\pi/3 < \Delta \Phi < \pi$ :
    - ❖ First non-trivial description by 2→3 treelevel ME
    - ❖ 2→3 NLO ME calculations became available recently (NLOJET++)
  - $\rightarrow \Delta \Phi < 2\pi/3$  (3-jet "Mercedes")
    - ❖ 2→4 processes and higher

3-jet production in lowest-order pQCD




### **Experimental Motivation**

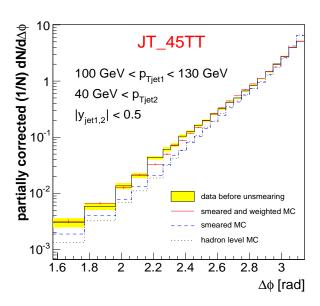
 Observable: ΔΦ distribution between the two leading jets normalized by the integrated dijet cross section

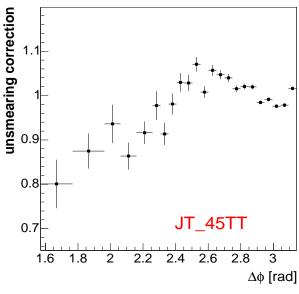
$$rac{1}{oldsymbol{\sigma}_{ ext{ iny dijet}}} \cdot rac{doldsymbol{\sigma}_{ ext{ iny dijet}}}{d\Delta\Phi}$$

- Advantages:
  - $\rightarrow \Delta \Phi$  is a simple variable, uses only the two leading jets
  - → No need to reconstruct any other jets!
  - → Jet direction is well measured
  - → Reduced sensitivity to jet energy scale



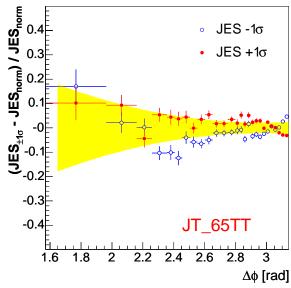
#### **Analysis Overview**

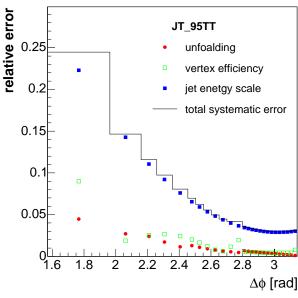

- Data sample:
  - → ~150 pb<sup>-1</sup> used in analysis
  - → At least two jets reconstructed with cone R=0.7
  - → Require that two leading jets are central: |y<sub>iet1.2</sub>|<0.5
  - → Jet p<sub>T</sub>'s in the region of full trigger efficiency
  - → Running conditions, jets, vertex, missing E<sub>T</sub> satisfy quality requirements
- Corrections for:
  - Cut efficiencies
  - → Jet energy scale
  - → Resolution smearing (unfolding)
- ΔΦ distribution measured only for ΔΦ>π/2 to avoid jet overlaps


### **Resolution Unfolding**

- Unfolding procedure:
  - Start with the ΔΦ spectrum obtained for jets reconstructed at hadron level in events from Pythia
  - Smear this spectrum according to measured resolutions in ΔΦ (from MC) and p<sub>T</sub> (from data)
  - → Reweight the resulting spectrum to fit the data
- Correction = unsmeared spectrum/ smeared spectrum

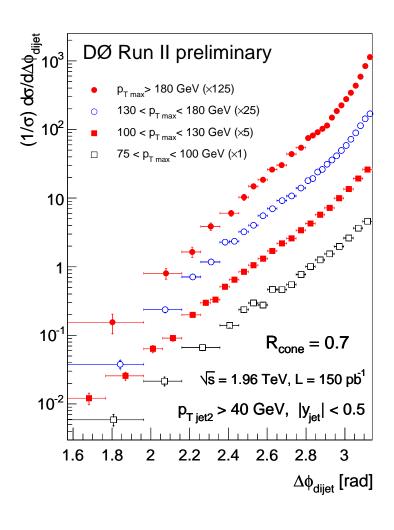
(bin-by-bin, after reweighting)


- → Includes effects of jet reordering due to smearing in p<sub>T</sub>
- → Shapes similar in all p<sub>T</sub> ranges
- Unfolding corrections not huge
- → Work in progress



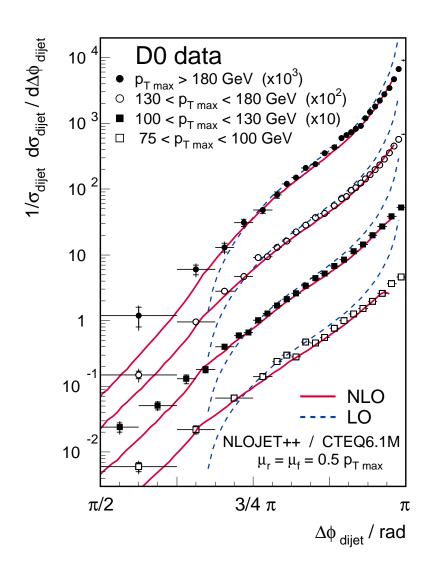



# **Systematics**


- Jet energy scale still results in a substantial uncertainty
  - → But, fractionally, much smaller than in the case of the absolute cross sections
  - → A new jet energy scale determination, with significantly smaller uncertainties, is propagating through the analyses
- Other sources:
  - → Vertex efficiency
  - Unfolding (under study)
- Estimated uncertainties:
  - ~5% ( $\Delta\Phi$ ~ $\pi$ ) to ~25% ( $\Delta\Phi$ ~ $\pi$ /2)





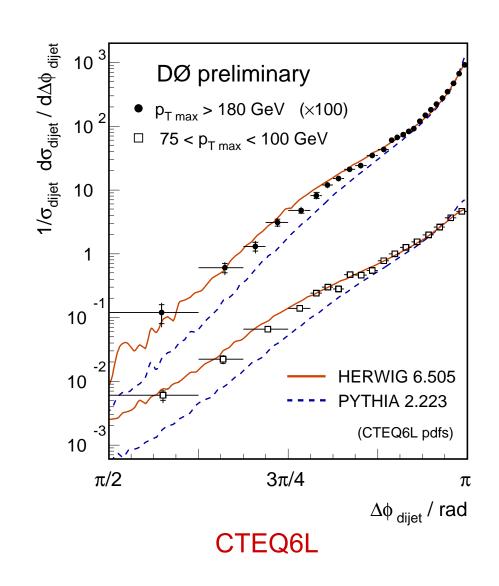

MC4RUN2 Workshop, 11 June 2004

### **Results: Dijet Azimuthal Decorrelations**



- Recap:
  - → Central jets |y| < 0.5
  - → Second-leading p<sub>T</sub> > 40 GeV
  - → Leading jet p<sub>T</sub> bin thresholds:
    ❖ 75, 100, 130, 180 GeV
- Towards larger p<sub>T</sub>, ΔΦ spectra more strongly peaked at ~π
  - → Increased correlation in ΔΦ
- Distributions extend into the "4 final-state parton regime", ΔΦ<2π/3</li>

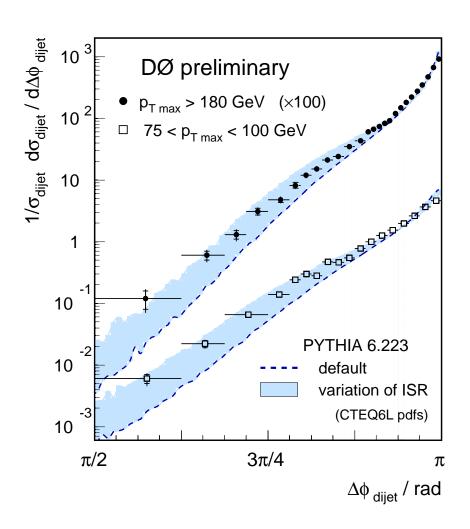
#### Comparison to Fixed-Order pQCD




- Leading order (dashed blue curve)
  - clear limitations
    - $\rightarrow$  Divergence at  $\Delta \Phi = \pi$  (need soft processes)
    - No phase-space at ΔΦ<2π/3 (only three partons)</p>
- Next-to-leading order (red curve)
  - Good description over the whole range, except in extreme ΔΦ regions

#### **Comparison to Parton-Shower Monte Carlo's**

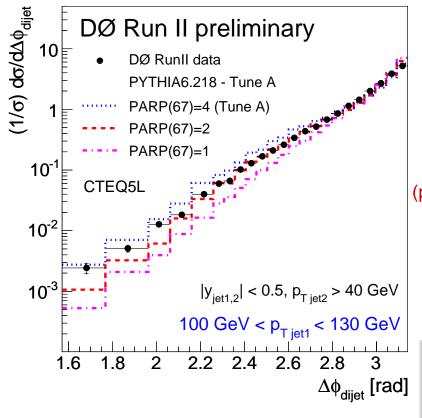
- Testing the radiation process:
  - → 3<sup>rd</sup> and 4<sup>th</sup> jets generated by parton showers
    - Soft and collinear approx.
- HERWIG 6.505 (default)
  - → Good overall description!
  - → Slightly too high in mid-range
- PYTHIA 6.223 (default)
  - → Very different shape
  - → Too steep dependence
  - → Underestimates low ΔΦ

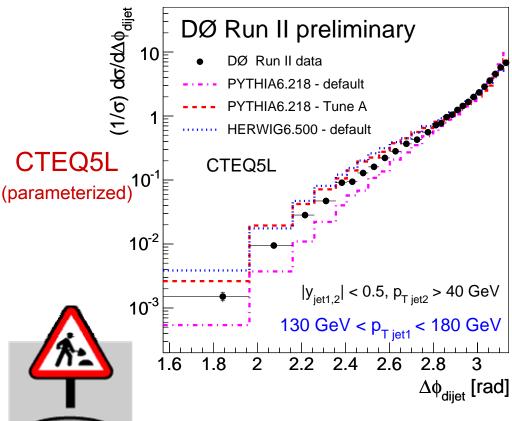





# Impact of ISR in Pythia

- ΔΦ distributions are sensitive to the amount of initial-state radiation
  - → Plot shows variation of PARP(67) from 1.0 (current default) to 4.0 (previous default, Tune A)
     ❖ PARP(67) controls the scale of parton showers
  - → Intermediate value suggested
- More PYTHIA tuning possible!



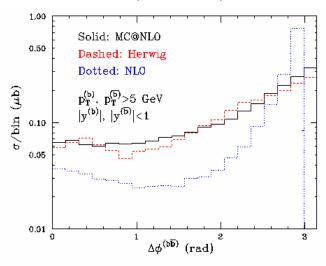

#### **ΔΦ**, Tune A, CTEQ5L and All That...

- Most of variation from PARP(67)
  - Sensitivity to soft underlying event small

 HERWIG prediction with CTEQ5L (parameterized) not as good as with CTEQ6L






Marek Zieliński, Rochester

MC4RUN2 Workshop, 11 June 2004

## **Summary and Outlook**

- The ΔΦ distribution has been measured for central jets in four p<sub>T</sub> regions using 150 pb<sup>-1</sup> of DØ Run II data
  - → Sensitive to higher-order QCD processes
  - → Test of 3-jet NLO pQCD at Tevatron
    - good agreement for most of ΔΦ range
  - → Prospects for tuning parton-shower Monte Carlo's
    - Herwig doing well, sensitivity to ISR in Pythia
- Plans, hopes, dreams:
  - → Extend the measurement to lower p<sub>T</sub> values
    - More sensitivity to initial-state gluons
    - ❖ A handle on quark vs gluon induced showers
  - → Extend to forward rapidities for one of the jets
    - Probe even smaller values of ΔΦ
    - More sensitivity to initial-state gluons
  - → Extend to b-tagged jets
    - ❖ Probe gluon→bbar splitting
    - Interesting overlap with top, Higgs physics...

#### Frixione, Nason, Webber

